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E I G E N V I B R A T I O N S  O F  A F L E X I B L E  P L A T F O R M  

F L O A T I N G  ON S H A L L O W  W A T E R  

L. A. Tkacheva UDC 532.591 

The spectral problem for a flexible platform (airport) floating on shallow water is examined. 
The platform is modeled by a flexible plate of finite width and infinite length. A waveguide 
eigenmode is detected which propagates along the platform and attenuates exponentially away 

from it. The remaining eigenmodes are outgoing and growing exponentially away from the 
platform. All the eigenmodes can be excited only by external action on the platform. The 
behavior of the platform under external loading is examined. 

Recent interest in the problem of floating flexible platforms is connected with the use of platforms in 
shelf exploitation, designing floating airports, etc., [1, 2]. Of particular concern is the study of the spectral 
properties of the problem, which makes it possible to predict dangerous effects on the platform, leading to 
elevated amplitudes of vibration and stresses. It should be noted that in most studies, the immersion of the 
platform in water is ignored i.e., the boundary conditions on the undersurface of the platform are extended 
to the unperturbed water surface. The results of the present study demonstrate that the ratio of the depth 
of immersion of the platform in the liquid is a small but important parameter for the eigenvibrations of the 
platform oil shallow water. 

Formula t ion  of  the  P rob lem and  M e t h o d  of  Solution.  The platform is modeled by a flexible 
plate of constant thickness, finite width, and infinite length. It is assumed that the liquid is ideally incom- 
pressible and its depth is small compared to the dimensions of the plate but is great compared to its thickness. 
Therefore, the liquid flow can be described using shallow-water theory. The vibration amplitudes are assumed 
to be small, and the problem is considered in a linear formulation. 

According to shallow-water theory [3], the liquid-velocity potential ~ on-the free part of the liquid 
surface satisfies the wave equation 

1 02~ 
A ~  gH Ot 2 - 0, (1) 

where g is the acceleration of gravity, H is the liquid depth, and t is time. On the undersurface of the plate, 
the following relations hold [3]: 

wt ---- - ( H  - d)Ap; (2) 

P = - P P t  - pg(w - d). (3) 

Here w are the normal displacements of the plate, d is the of immersion of the plate in water, p is the pressure 
on the undersurface of the plate, and p is the liquid density. 

The vibration of the plate is described by the equation [4] 
02w 

D A A w  + poh - - ~  = p. (4) 
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Here D is the cylindrical rigidity of the platform, h is its thickness, P0 is the density of the material,  and A 
is the two-dimensional Laplace operator  with respect to the horizontal coordinates. 

The  edges of the plate are not fixed. Since the plate is partially immersed in water, the liquid exerts 
a force on the plate edges. According to the laws of mechanics, the force acting on a system is equal to 
the change in the momentum of the system in unit time. We introduce Cartesian coordinates with the y 
axis directed along the plate, the x axis directed in the transverse direction, and the z axis directed in the 
vertical direction. The  plate of width 1 occupies the segment - I / 2  <~ x <~ I/2. We examine the liquid 
region located between the cross sections x = Xl and x = x2 (xl < l /2  < x2). The change in momentum 
in unit t ime is equal to the difference of momentum fluxes through the cross sections x = xl  and x = x2: 

p ( H  - d)(~x) 2 z=zl - PH(pz)2 x=z2" This quanti ty is a second-order small parameter  with respect to the 

vibrat ion amplitude. In the linear approximation, the transverse force and the moment at the plate edges 
are set equal to zero: 

02w 02w 0 (0 w 
Ox--- ~ + .  ~ = o, 0--~ ~ Oz 2 + (2 - . )  Oy 2 ] = o. (5) 

( ,  is Poisson's constant).  

A solution that  is periodic in time is sought in the form p = x /gH  lO exp ( - i w t ) ,  and the space variables 
are related to the characteristic horizontal dimension I. Then, from (1), for the amplitude of the potential  q), 
we obtain the Helmholtz equation on the free par t  of the liquid surface: 

A ~  + ~ 2 ~  = 0. (6) 

Here A = w l / x / ~  is the dimensionless complex frequency. In this case, radiation conditions implying the 
absence of arriving waves should be satisfied at infinity to the left and to the right of the plate. 

Substi tuting (2) and (3) into (4), we write the following equation for the liquid-velocity potential  under 
the plate: 

A3O + (G - BA2)AO + GA2O/(I - ~) = 0. (7) 

Here G = pgl4 /D,  B = poghHl2 /D ,  and ~ = d / H  are dimensionless input parameters.  The assumptions 
made in the formulation of the problem imply that  B << G and ~ << 1. In the derivation of Eq. (7), the 
weight of the plate and the hydrostatic pressure component are ignored since they influence only the static 
par t  of the plate deflection. 

Besides conditions (5) at the edges of the plate, the conjugation conditions on the boundary between the 
two regions should be satisfied. The conjugation conditions are deduced in [3] from the laws of conservation 
of mass and energy. At the edges of the plate, the potential  is continuous, and the normal derivative has a 
discontinuity. For the plate, these conditions take the form 

�9 (1/2 - O) = ~ ( I / 2  + 0), ( H  - d),Dx(l/2 - O) = H O x ( I / 2  + 0), 
(8) 

�9 ( - l / 2  - O) = ~ ( - l / 2  + 0), ( H  - d ) ~ z ( - I / 2  + O) = H O z ( - l / 2  - 0). 

The  problem is solved by the following method.  A general solution with unknown coefficients in each 
of the regions is constructed. From the boundary  conditions and the conjugation conditions, we obtain a 
system of linear algebraic equations for the unknowns coefficients. The existence condition for a nontrivial 
solution is the equation to zero of the determinant  of this system. Investigation of the eigenvibrations of the 
plate on water reduces to seeking values of the spectral parameter  A for which the determinant of the system 

is equal to zero. These values are found numerically using the principle of argument [5]. 
A b s o l u t e l y  R i g i d  P l a t f o r m .  We consider an absolutely rigid plate and the rigid eigenvibrations of 

the plate on water. Its normal displacements are representable as w = l (aox + zo) e x p ( - i w t ) ,  where z0 and a0 
are the amplitudes of vertical displacement of the center of mass and rotation around it. The  displacements 

of the plate are related to the potential  and pressure by relations (2) and (3). 
In (2) and (3), we convert to the dimensionless variables P and �9 using the formulas 

p = pgIP  exp ( - i w t ) ,  ~ = x / g g  l~ exp ( - i w t ) ,  
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and relate the coordinate x to the characteristic dimension l. As a result, we obtain 

02~ 
Ox 2 = iA (z0 + a0x), P = iA H ~ _ aox - zo, 

Hence, the potential and pressure under the plate are 

, x3 
= ia ~ ~,a0 T + z0 + 7z  + 5, 

P -  1---• c~0-~-+z0 + i A T ( T x + 6 ) - a o x - z 0 .  

With  allowance for (6) and the radiation condition, the potential outside the plate is written as 

= ~ R e x p ( i A ( x -  1/2)), x > 1/2. 

t T e x p  ( - i a ( x  + 1 /2 ) ) ,  z < - 1 / 2 .  

Thus, for six unknown constants (a0, z0, 7, 6, R, and T) we have two conjugation conditions (8) at the plate 
edges and two equations of rigid-body motion of the plate: 

1/2 1/2 

-w2AIlzo = pgl 2 / P dx, -a~2Iao = pgl 3 / P x d x  

-1/2 - i /2  
(11i is the weight of the plate and I is the moment of inertia of the plate). Substituting the formula for P 
into these relations and integrating, we obtain 

A2 H .  A 2 A2b) H ( ( 
20 1 + 24(1 - z) "T a0 - = - i , \  T 7  = 0, 

where b = B/G.  Thus, we have a homogeneous system of sixth-order algebraic linear equations. The 
existence condition for a nontrivial solution is the equality to zero of the determinant of this system. By 
virtue of symmetry properties, we can distinguish between modes that are symmetric and antisymmetric 
about the plane x = 0. Then, the system is divided into two systems of the third order. 

Thus, determination of eigenfrequencies reduces to seeking roots of the third-order polynomials: 

[i/(3(1 - e) z) + 4ib/(1 - ~ ) ] A  3 - 2A2/(1 - ~) - 4iA/(1 - e) = 0 

for symmetric modes, and 

[i/(15(1 - ~)2) + 4ib/(1 - e)]A 3 - [i/(5(1 - ~)) + 8b]A 2 - 4iA/(1 --~) + 8 = 0 

for antisymmetric modes. 
For symmetric modes, we obtain one eigenvalue A1 = 0 and two complex eigenvalues, and for antisym- 

metric modes, we have one purely imaginary eigenvalue and two complex eigenvalues. All eigenvalues are 
located in the lower half-plane and are symmetric about the imaginary axis. 

F lex ib le  P l a t e .  We consider flexible vibrations of the plate. We assume that  the potential and 
displacements are periodic in y: ~ = 9x /~  l~(x)exp ( i (k2y-  wt)), where k2 is the dimensionless wavenumber 
in the y direction and ~ satisfies the equation 

( d2 2) 3 ( d2 ) G A2 q ~ : 0  for Ix t<  1/2 (9) 
-g-~ 2 - ~2 ~ + ( c -  m 2 )  EESx "~ - k~ ~ + -ff:-7- ~ 

and Eq. (6) for I~l > 1/2. From Eq. (6) and the radiation conditions it follows that  outside the plate, the 
solution is 

nexp[ /v /A 2 - k ~ ( x -  1/2)], x > 1/2, 

= Texp  [ - i v / ' ~  - - ~ ( x  + 1/2)I, x < -1 /2 .  
(10) 

In this case, the branch of the root is selected so as to ensure the radiation condition, i.e., -7r/2 < 
argv/A 2 - k22 ~< 7r/2. The radiation condition is used here to select a unique solution. For Rex/r~ - k~ 2 > 0, 
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the solution corresponds to waves that  move away from the plate,  and for Rev/A 2 - k~ = 0, it is localized 

near the plate  and is damped  exponentially away from it. 

The  conjugation conditions have the form (8), and the boundary  conditions (5) are 

The  general solution of Eq. (9) is sought as a series in functions of the form exp (ax),  where a satisfies 
the equat ion 

(a 2 - k2) 3 + (G - B A 2 ) ( a  2 - k~) + GA2/(1 - ~) = 0. (12) 

We note tha t  Eq. (12) is cubic in G 2 - -  ] g 2 ,  and, hence, it can be solved invoking the Cardano formulas. 

Generally, Eq. (12) has sLx different roots ai (i = 1-6), and the functions exp (n ix)  form a fundamental  

sys tem of solutions of Eq. (9). However, for some values of the paramete r  A, Eq. (12) has multiple roots. 

Such values of A can be found from the Cardano formulas. We consider the case k2 = 0. Equation (12) 
becomes 

a 6 + ( a  - SA2)cr 2 + GA2/(1 - r = 0. (13) 

Equat ion (13) has the double root a = 0 for A = 0. The  values of A for which Eq. (13) has nonzero multiple 
roots are given by the relation 

+ \2(~ -~c) 0. (14) 

Since B << G, we can set B = 0 as a first approximation.  Then,  four roots are given by the relation 

= - 4 c ( 1  -  )2/27. (15)  

The  corresponding values of A lie on the bisectrices of the quadrants.  For B ~ 0, the correction to these 
values can be found by the per turbat ion method.  The  two other roots are sought by the asymptot ic  method.  
V~re replace A = G1/4~e and write Eq. (14) in the form 

( 1  - 52a~2) 3 + 27ae4/(4(1 - e)2) = O, 52 = B/x/-G. (16) 

In the limit 5 ---* 0, the four roots remain finite and are defined by relation (15), and the two other roots are 

not limited. We seek them in the form ~e = c / f ( 5 ) ,  where f ( 5 )  ~ 0 as 5 ----* 0 and c is a constant.  Subst i tut ing 
this expression into (16), we obtain 

55 54 56 27 c 4 
1 - 3 T + 3 T c4 - + 4(1  - - o. (17)  

As 5 ---* 0, the main terms of the equations should have the same order, and, hence, 5 6 / f  6 = 1 I f  4 and f = 53. 

Equat ion (17) is wri t ten as 

512 _ 358c 2 + 354c4 _ c 6 + 27c4/(4(1 _ ~)2) = 0. 

In the limit 5 --* 0, we have c4[c 2 - 27/(4(1 - ~)2)] = 0, and, hence, we obtain two nonzero values of c which 

correspond to the values A = =E3v~/(2(1 - r  

In the case k2 ~ 0, the values of A for which nonzero multiple solutions of Eq. (12) exists are the same 
as in the case ks = 0. Equat ion (12) has zero multiple roots  al,2 = 0 for A~ = (k 6 + Gk22)/(Bk~ + G / ( 1  - ~)). 

Both  values =EA0 lie on the real axis. 

For all values of A, except for those mentioned above, the solutions exp (nix)  (i = 1-6) form a 
fundamental  sys tem of solutions of Eq. (9) for ks -- 0. Under the plate, the liquid-velocity potent ial  is 

6 
= ~ Ck exp (akx)  (--1/2 < x < 1/2) and outside the plate, it has the form (10). 

k----1 
From the conjugation conditions and the  boundary  conditions, we obtain  a system of linear algebraic 

equations whose determinant  should be equal to zero. The  determinant  of the system is an analytic function 
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TABLE 1 

A 

r S y m m e t r i c  A n t i s y m m e t r i c  

m o d e s  m o d e s  

0 

0.01 

0 .08  

0.1 

0; -+1.73 - 3.0i  

0; -+1.75 - 2 .97i  

0; -+1.85 - 2.75i 

0; -+1.87 - 2.7i 

- 4 . 6 4 i ;  •  - 3 .67i  

- 4 . 4 7 6 i ;  -+3.55 - 3 .69i  

- 3 . 5 3 i ;  + 3 . 8 2  - 3 .74i  

- 3 . 3 4 i ;  -+3.89 - 3 .73i  
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Fig. 1 

of A over the entire complex plane, except for singular points and the cut on the real axis [-k2, k2]. Singular 
points can be branch points of the roots, i.e., values of the spectral parameter A for which Eq. (12) has 
multiple roots. In this case, the system of part icular  solutions exp (aix) becomes linearly dependent and one 
of the solutions exp (aix) should be replaced by x exp (aix). 

By virtue of symmetry of the problem, the eigenvibrations of the system 
are conveniently divided into symmetric and antisymmetric modes about the plane 

3 
x ---- 0. For symmetrical  modes, the velocity potential  under the plate is writ ten as �9 = ~ ck cosh (akX) 

k = l  
3 

(Ixl < 1/2) and for antisymmetric modes, �9 = ~ Ck cosh (CrkX) (Ixl < 1/2). 
k----I 

From the boundary conditions and the conjugation conditions, we obtain two systems of linear algebraic 
equations of the fourth order. Outside the interval I-k2, k2], the eigenvalues are sought numerically using 
the argument principle [5]. The parameter k2 is specified, and the dependence of the dimensionless frequency 
)~ on k2 for the eigenmodes is examined. It should be noted that  tim eigenvalues are symmetric about the 
imaginary axis. If A is an eigenvalue, - ~  is also an eigenvalue. 

At the edges of the cut [-k2, ks], the determinant of the system is a purely imaginary value. The 
determinant  of the system was calculated for various values A E I -ks ,  k2]. The ch~[nge of sign of the imaginary 
par t  indicates the presence of zero. 

N u m e r i c a l  R e s u l t s .  Numerical calculations were performed for a model of a floating pontoon airport. 
for the following parameters of the problem [1]: width of the plate l -- 1250 m, thickness h = 4.5 m, draught 
d = 1.8 m, water layer depth H = 22 m, weight of the plate per unit area m = 1.8 tons /m 2, Poisson's constant 
v = 0.3, and rigidity D = 1012 and 1014 N/m.  The dimensionless input parameters are b = B/G -- 0.000025, 

= 0.08, and G -- 10000 and 100. 
From the calculations it follows that  for a flexible plate, as for a rigid plate, there are six eigenmodes: 

three symmetric and three antisymmetric modes. For k2 -- 0 and D --* oo, the hydroelastic frequencies tend 
to the corresponding values for a rigid plate. 

The calculations show that  the small parameter  r -- d/H has a significant effect on the eigenvalues. 
Indeed, in the derivation of the shallow-water equation, expansion is performed in the small parameter  H2/l 2, 
which for platforms of this type is about 0.0003. In this case, ~ -- 0.08. The parameter  r is large compared 
to H2/l 2, and, hence, it should be taken into account for platforms of this type. 

Table 1 shows the eigenvalues (dimensionless) for an absolutely rigid plate for various c. It is obvious 
that  the effect of ~ is most pronounced for the first antisymmetric mode. 

The  effect of the parameter  r on the eigenvalues of a flexible plate is not only quantitative but also 
qualitative. For ~ ~ 0, the first symmetric mode in a certain interval of values ks is waveguide. For each 
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e, a certain critical value k~(x) exists such that  the first symmetric mode ceases to be waveguide mode and 
becomes outgoing and growing at infinity. For k2 > k~ there are no waveguide modes. As c ---* 0, the 
critical point tends to zero. Figure 1 shows the reduced frequency A of the first symmetric mode versus the 
wavenumber k2 for various values of ~ (curves 1-4 refer to ~ = 0.08, 0.04, 0.01, and 0, respectively) and 
G = 10,000 and 100 (solid and dashed curves, respectively). The points show the critical values for which 
the waveguide mode becomes outgoing. For k2 > k~, the eigenmode is exponentially growing at infinity with 
coefficient kl = v/k~ - A 2. The  vibration form of the plate for the waveguide mode is shown in Fig. 2 (curve 

1 refers to k2 = 1 and curve 2 refers to k2 = 4) for G = 10,000 and s = 0.08. 
The  first antisymmetric mode also has a certain critical value k~ For k2 < k~ the eigenvalue 

A is purely imaginary, A ---* 0 as k2 --* k~162 and for k2 > k~ A becomes a real quantity. Figure 3 
shows the eigenvalue A versus k2 for the first antisymmetric mode for various values of c (curves 1-4 refer to 

= 0.08, 0.04, 0.01, and 0) and G = 10,000 and 100 (solid and dashed curves, respectively). The eigenmode 
is exponentially growing in x for all k2. 

The  second modes (symmetric and antisymmetric) have complex eigenvalues. The eigenvalue A versus 
k2 for the second symmetric mode for various values of ~ are given in Fig. 4a and b for G = 10,000 and 
100, respectively. Figure 5 shows the eigenvalue A versus k2 for the second antisymmetric mode for various 
values of r and G -- 10,000. For these modes, the effect of the parameter  ~ becomes less pronounced and 
only quantitative. Qualitatively, the behavior of the curves for different values of the parameter  e is similar. 
However, for some combinations of the input parameters  (for example, G = 10,000 and ~ = 0.01) there 
is a sharp decrease in the damping coefficient Im A for k2 = 5.5 for the second symmetric mode. The  
eigenfrequency of the second antisymmetric mode practically does not depend on r 
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It should be noted that  the plate eigenvibrations found cannot be excited by incoming waves since 
they are described by different dispersion relations. For the eigenvibrations of the plate, the wavenumber 
kl in the x direction is purely imaginary. Since A2 = k~ + k 2, we have A ~< k2 for the eigenvibrations and 
A/> k2 for waves on water. The single case where the dispersion relation for the eigenvibrations corresponds 
to waves on water is the critical point for the first symmetric mode, at which kl = 0 and k2 = A. This 
case corresponds to a wave propagating along the plate in the absence of reflected and transmitted waves. 
The model of an infinitely long plate becomes inapplicable since the number of equations is larger than the 
number of unknowns. A solution can be constructed only when the wave has a wavenumber and a frequency 
corresponding to the critical point. The system then becomes compatible. 

B e h a v i o r  o f  t h e  P l a t e  u n d e r  E x t e r n a l  L o a d i n g .  We consider the case where the plate is subjected 
to periodic external load qo(Y)exp(-iwt) that  does not depend on x: 

qo, lyl < yo, 
qo(y)= 0, lyt>yo.  

The plate performs forced vibrations under the same harmonic law w(x, y) exp (-iwt).  The function w(x, y) 
is a solution of the equation 

G )~ 2 
H ( I _ ~ ) A ~ ,  A 3 ~ + G ( 1 - b A 2 ) A ( ~ +  1 l A w ( x ,  y)  = 7 -  - 

We use a Fourier transform along the y coordinate: 

q0(y) (18) 
= t ~ l - e  pgh 

y( ) 

O0(k2) = ~ exp (-ik2y)qo dy = k2 ' 
--Yo 

~(x,  k2) = ~ exp (-ik2y)O(x, y) dy. 

Assuming that  as lYl -* oo, ~5(x, y) tends to zero together with derivatives with respect to y up to the fifth 

order, inclusively, we obtain 

] 0o(k2) (19) 
3 

The  general solution of this equation is ~(x,  k2) = E aj cosh (O'jX) + ~0(X, k2), where aj are solutions of Eq. 
j=l  

(12), aj are arbitrary constants, and ~0(z, k2) is a particular solution of Eq. (19). The particular solution 

has the form 
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O0(k2) GA 
~0(x, k2) = - i  

pgh(1 - ~) k 6 + G(1 - bA2)k~ - GA2/(1 - x)' 

if the denominator is different from zero, and, otherwise, 

4,o(x, k2) = i ~o(k2) G~ x 2 

pgh(1 - ~) 3k~ + a ( 1  - b:~:) 2" 
From (18) we obtain 

H(1 - ~) [ 
[ 

3 

j=l 
(20) 

Determining the coefficients aj from boundary conditions (11) and the conjugation conditions, we have 
a system of linear algebraic equations whose eigenvibrations were studied above. According to the Cramer 
rule, the solution of this system for the coefficients aj has the form aj ~- A j /D ,  where D is the determinant 
of the system. From (20), we obtain 

K -5 

Using an inverse Fourier transform, we find w(x, y). As y --~ co. the integral can be calculated by means of 
residues. The residues on the real axis are of primary interest, and the remaining residues give a solution 
that decays in the y direction. If the frequency of the external pressure field is in the range of existence of 
the waveguide mode, the local periodic load generates a wave of the form C(x) exp (ik2y), which propagates 
along the plate practically without damping, and can set the entire plate in vibration. 

Schulkes and Sneyd [6] and Marchenko [7] showed that resonance is observed in the case of a moving 
periodic load if the external pressure field moves with the group velocity of the waveguide eigenmode, and 
the frequency corresponds to the eigenfrequency of the waveguide mode in a coordinate system attached to 
the moving load. In this case, for t ~ co, the solution is proportional to exp (i~'t)v~. For a flexible plate, 
the resonant velocity is equal to v/gH. Thus, in designing a floating airport on shallow water, it is necessary 
to take measures to suppress the waveguide mode. 

The work was performed within the framework of the integration project No. 43 of the Russian Academy 
of Sciences and supported by the Russian Foundation for Fundamental Research (Grant No. 97- 01-00897). 
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